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A Proof about “Divides”

 b dvd a  ↔  (∃k. a = b × k)

locally bound variables

an assumption

A messy proof with 
two subgoals...

We unfold the 
definition and get...?
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Complex Subgoals

• Isabelle provides many tactics that refer to bound 
variables and assumptions.

• Assumptions are often found by matching.

• Bound variables can be referred to by name, but 
these names are fragile.

• Structured proofs provide a robust means of 
referring to these elements by name.

• Structured proofs are typically verbose but much 
more readable than linear apply-proofs.



A Structured Proof

But how do you 
write them?
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The Elements of Isar

• A proof context holds local variables and 
assumptions of a subgoal.

• In a context, the variables are free and the 
assumptions are simply theorems.

• Closing a context yields a theorem having the 
structure of a subgoal.

• The Isar language lets us state and prove 
intermediate results, express inductions, etc.
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Getting Started

indicates the start of a 
structured proof
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The Proof Skeleton

separates proofs of goals

terminates the proof

a name for the bound variable

dummy 
proofs

assumption

conclusion
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Fleshing Out that Skeleton

inserting a helpful fact

labels for facts more labels

a real proof!
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Completing the Proof

found using sledgehammer

sledgehammer does it again!
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Streamlining the Proof

• hence means have — using the previous fact

• thus means show — using the previous fact

• There are numerous other tricks of this sort!
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Another Proof Skeleton

specify m’s type

declare a premise separately

restricting the range of abs m

makes the conclusion trivial

null proof step
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Starting a Nested Proof

default proof step
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A Nested Proof Skeleton

assumption

conclusion



A Complete Proof



A Complete Proof

a chain of steps leads 
to contradiction
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Calculational Proofs

form a series of 
equalities and inequalities
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The Next Step

refers to the previous 
right-hand side
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The Internal Calculation

Isabelle displays the internal 
calculation when it encounters 

also and finally

structure 
of a 

calculation
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Ending the Calculation

We have deduced 
2 × abs n ≤ 1

indicates a trivial proof
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Structure of a Calculation

• The first line is have/hence

• Subsequent lines begin, also have “... = “

• Any transitive relation may be used. New ones may 
be declared.

• The concluding line begins, finally have/
show, repeats the calculation and terminates with 
(.)


