Interactive Formal Verification 10: Structured Proofs

Tjark Weber (Slides: Lawrence C Paulson) Computer Laboratory University of Cambridge

 $b dvd a \leftrightarrow (\exists k. a = b \times k)$

$\odot \odot \odot$	Struct.thy	\bigcirc
00 00 X < 🕨 Y	H 🖀 🔎 🕕 🐖 🖨 🥵 🚏	
		0
lemma "(k dvd (n + k)) = (k dvd (n::nat))"	
apply (auto simp add	: dvd_def)	
		<u> </u>
		Ţ
-u-:**- Struct.thy	12% L22 (Isar Utoks Abbrev; Scripting)-	4
proof (prove): step	1	
goal (2 subgoals): 1 $\Lambda ka n + k = k$	* ka $\implies \exists ka n = k * ka$	
2. ∧ka. ∃kb. k * ka	a + k = k * kb	

 $b dvd a \leftrightarrow (\exists k. a = b \times k)$

 $b dvd a \leftrightarrow (\exists k. a = b \times k)$

 $b dvd a \leftrightarrow (\exists k. a = b \times k)$

 $b dvd a \leftrightarrow (\exists k. a = b \times k)$

- Isabelle provides many tactics that refer to bound variables and assumptions.
 - Assumptions are often found by matching.
 - Bound variables can be referred to by name, but these names are fragile.

- Isabelle provides many tactics that refer to bound variables and assumptions.
 - Assumptions are often found by matching.
 - Bound variables can be referred to by name, but these names are fragile.
- Structured proofs provide a robust means of referring to these elements by name.

- Isabelle provides many tactics that refer to bound variables and assumptions.
 - Assumptions are often found by matching.
 - Bound variables can be referred to by name, but these names are fragile.
- Structured proofs provide a robust means of referring to these elements by name.
- Structured proofs are typically verbose but much more readable than linear apply-proofs.

A Structured Proof

```
000
                                    Struct.thy
                                                                             \bigcirc
oo oo 工 ┥
                 I 🛨 🛏 🖀 🔎 🎧 🕼 🖉 🕀 🚏
lemma "(k dvd (n + k)) = (k dvd (n::nat))"
 proof (auto simp add: dvd_def)
  fix m
  assume "n + k = k * m"
  hence "n = k * (m - 1)"
    by (metis diff_add_inverse diff_mult_distrib2 nat_add_commute nat_mult_1_rig
ht)
 thus "∃m'. n = k * m'"
by blast
next
  fix m
  show "∃m'. k * m + k = k * m'"
    by (metis mult_Suc_right nat_add_commute)
aed
-u-:--- Struct.thy
                                 (Isar Utoks Abbrev; Scripting )------
                        2% L11
proof (prove): step 6
 using this:
  n = k * (m - 1)
goal (1 subgoal):
 1. ∃m'. n = k * m'
-u-:%%- *goals*
                       Top L1
                                 (Isar Proofstate Utoks Abbrev;)------
tool-bar goto
                                       But how do you
                                         write them?
```

The Elements of Isar

The Elements of Isar

- A proof context holds local variables and assumptions of a subgoal.
 - In a context, the variables are free and the assumptions are simply theorems.
 - Closing a context yields a theorem having the structure of a subgoal.

The Elements of Isar

- A proof context holds local variables and assumptions of a subgoal.
 - In a context, the variables are free and the assumptions are simply theorems.
 - Closing a context yields a theorem having the structure of a subgoal.
- The Isar language lets us state and prove intermediate results, express inductions, etc.

Getting Started

$\odot \odot \odot$		Struct.thy	\bigcirc
∞ ∞ ∡ ◄ ► ⊻	🛏 🖀 🔎 (🚯 🕼 🤤 🤣 🙀	
lemma "(k dvd (n + k proof (auto simp add	()) = (k dvd (1: dvd_def)	(n::nat))"	0
	110/ 1 22	(Tean Utoka Abbrau)	4
-u-:**- Struct.tny	11% L22	(Isar utoks Abbrev; Scripting)	6
proof (state): step goal (2 subgoals): 1. ∧ka. n + k = k 2. ∧ka. ∃kb. k * k	1 * ka ⇒ ∃ka. a + k = k * k	n = k * ka kb	
-u-:%%- *goals*	Top L1	(Isar Proofstate Utoks Abbrev;)	

Getting Started


```
\odot \bigcirc \bigcirc
                                      Struct.thy
                                                                                  \bigcirc
00 00 I 🔺 🕨 Y 🛏 🆀 🔎 🗊 🐷 🤤 🤣 🚏
lemma "(k dvd (n + k)) = (k dvd (n::nat))"
proof (auto simp add: dvd_def)
 fix m
  assume "n + k = k * m"
  show "∃m'. n = k * m'"
   sorry
next
 fix m
  show "∃m'. k * m + k = k * m'"
   sorry
aed
-u-:**- Struct.thy 11% L21 (Isar Utoks Abbrev; Scripting)-------
Successful attempt to solve goal by exported rule:
(n + k = k * ?m2) \implies \exists m' \cdot n = k * m'
Successful attempt to solve goal by exported rule:
  \exists m'. k * ?m2 + k = k * m'
lemma (?k dvd ?n + ?k) = (?k dvd ?n)
-u-:%%- *response*
                       All L7
                                   (Isar Messages Utoks Abbrev;)------
```

$\odot \odot \odot$	Struct.thy
00 CO 🗶 🔺 🕨 🗶 🛏 🖀 🔎 🚺	۱۹۶۲ 🖨 😌 🙀
<pre>lemma "(k dvd (n + k)) = (k dvd (n proof (auto simp add: dvd_def) fix m assume "n + k = k * m" show "∃m'. n = k * m'" sorry</pre>	a name for the bound variable
<pre>next fix m show "∃m'. k * m + k = k * m'" sorry</pre>	
qea	
-u-:**- Struct.thy 11% L21	(Isar Utoks Abbrev; Scripting)
Successful attempt to solve goal by $(n + k = k * ?m2) \implies \exists m' \cdot n = k$	/ exported rule: * m'
Successful attempt to solve goal by $\exists m'. k * ?m2 + k = k * m'$	y exported rule:
lemma (?k dvd ?n + ?k) = (?k dvd ?n	
-u-:%%- *response* All L7	(Isar Messages Utoks Abbrev;)

$\odot \odot \odot$	Struct.thy	
00 00	▼ ◀ ▶ Y ⊨ 🆀 🔎 🚯 🐖 🖨 🤣 🚏	
▶lemma "	(k dvd (n + k)) = (k dvd (n::nat))"	h
proof (auto simp add: dvd_def)	
	e 1: "n + k = k * m"	9
have	2: "n = k * (m - 1)" using 1	Ш
sor	ry	Ш
show	"∃m'. n = k * m'" using Z	Ш
next	Diusi	Ш
fix m		Ш
show	$"\exists m'. k * m + k = k * m'"$	Ш
sor	ry	ų
qcu		Ŧ
-u-:**-	Struct.thy 15% L37 (Isar Utoks Abbrev; Scripting)	
Success (n +	ful attempt to solve goal by exported rule: k = k * ?m2) ⇒ ∃m'. n = k * m'	
Success	ful attempt to solve goal by exported rule.	Ш
∃m'.	k * ?m2 + k = k * m'	
lemma (?k dvd ?n + ?k) = (?k dvd ?n)	Ļ
-11-:%%-	*response* All 17 (Isar Messages Utoks Abbrev:)	1

$\odot \odot \odot$	Struct.thy	\bigcirc
00 00	X ◀ ▶ X ⋈ 🏰 🔎 🕦 🕼 🗢 😌 🚏	
<pre> lemma " proof (fix m assum have sor show by next fix m show</pre>	<pre>(k dvd (n + k)) = (k dvd (n::nat))" auto simp add: dvd_def) e 1: "n + k = k * m" 2: "n = k * (m - 1)" using 1 ry "∃m'. n = k * m'" using 2 blast "∃m'. k * m + k = k * m'"</pre>	0
sor qed	ry	4
-u-:**-	Struct.thy 15% L37 (Isar Utoks Abbrev; Scripting)	
Success (n +	ful attempt to solve goal by exported rule: $k = k * ?m^2 \implies \exists m' \cdot n = k * m'$	\cap
Success ∃m'.	ful attempt to solve goal by exported rule: k * ?m2 + k = k * m'	
lemma (?k dvd ?n + ?k) = (?k dvd ?n)	4
-u-:%%-	<pre>*response* All L7 (Isar Messages Utoks Abbrev;)</pre>	
		11.

Completing the Proof

```
\odot \bigcirc \bigcirc
                                      Struct.thy
                                                                                  \bigcirc
00 00 🔳 🔺 🕨 🗶 🛏 🖀 🔎 🗊 🐷 🤤 🤣 🚏
lemma "(k dvd (n + k)) = (k dvd (n::nat))"
 proof (auto simp add: dvd_def)
  fix m
  assume 1: "n + k = k * m"
   have 2: "n = k * (m - 1)" using 1
     by (metis diff_add_inverse diff_mult_distrib2 nat_add_commute nat_mult_1_rig ≥
ht)
   show "\exists m'. n = k * m'" using 2
     by blast
 next
 fix m
 show "∃m'. k * m + k = k * m'"
    sorry
 aed
-u-:**- Struct.thy 20% L65 (Isar Utoks Abbrev; Scripting )-----
 Sledgehammer: external prover "spass" for subgoal 1:
 \exists m'. k * m + k = k * m'
Try this command: apply (metis mult_Suc_right nat_add_commute)
 For minimizing the number of lemmas try this command:
 atp_minimize [atp=spass] mult_Suc_right nat_add_commute
 Sledgehammer: external prover "e" for subgoal 1:
 \exists m'. k * m + k = k * m'
-u-:%%- *response* Top L1 (Isar Messages Utoks Abbrev;)-----
menu-bar Isabelle Commands Sledgehammer
```

Completing the Proof

```
\odot \bigcirc \bigcirc
                                     Struct.thy
00 00 I 🔺 🕨 Y 🛏 🖀 🔎 🗊 🐷 🤤 🤣 🚏
 lemma "(k dvd (n + k)) = (k dvd (n::nat))"
 proof (auto simp add: dvd_def)
  fix m
   assume 1: "n + k = k * m"
   have 2: "n = k * (m - 1)" using 1
     by (metis diff_add_inverse diff_mult_distrib2 nat_add_commute nat_mult_1_rig
ht)
   show "\existsm'. n = k * m'" using 2
                                             found using sledgehammer
     by blast
 next
  fix m
  show "∃m'. k * m + k = k * m'"
     sorry
 aed
-u-:**- Struct.thy 20% L65 (Isar Utoks Abbrev; Scripting )-----
 Sledgehammer: external prover "spass" for subgoal 1:
 \exists m'. k * m + k = k * m'
 Try this command: apply (metis mult_Suc_right nat_add_commute)
 For minimizing the number of lemmas try this command:
 atp_minimize [atp=spass] mult_Suc_right nat_add_commute
 Sledgehammer: external prover "e" for subgoal 1:
 \exists m'. k * m + k = k * m'
-u-:%%- *response*
                       Top L1 (Isar Messages Utoks Abbrev;)----
menu-bar Isabelle Commands Sledgehammer
```

Completing the Proof

```
\odot \bigcirc \bigcirc
                                     Struct.thy
                 I 🗹 🛏 🚄 🔎 🚺 🕼 🖕 💱
00 00 🔳
lemma "(k dvd (n + k)) = (k dvd (n::nat))"
 proof (auto simp add: dvd_def)
  fix m
  assume 1: "n + k = k * m"
  have 2: "n = k * (m - 1)" using 1
     by (metis diff_add_inverse diff_mult_distrib2 nat_add_commute nat_mult_1_rig
ht)
  show "\existsm'. n = k * m'" using 2
                                             found using sledgehammer
     by blast
 next
  fix m
  show "∃m'. k * m + k = k * m'".
    sorry
                     20% L65 (L50 sledgehammer does it again!
 aed
-u-:**- Struct.thy
 Sledgehammer: external prover "spass" for subgoal 1:
 ∃m'. k * m + k = k * m' 🖌
 Try this command: apply (metis mult_Suc_right nat_add_commute)
 For minimizing the number of lemmas try this command:
 atp_minimize [atp=spass] mult_Suc_right nat_add_commute
 Sledgehammer: external prover "e" for subgoal 1:
 \exists m'. k * m + k = k * m'
-u-:%%- *response*
                       Top L1 (Isar Messages Utoks Abbrev;)---
menu-bar Isabelle Commands Sledgehammer
```

assume 1: "n + k = k * m"
have 2: "n = k * (m - 1)" using 1
 by (metis diff_add_inverse diff
show "∃m'. n = k * m'" using 2

hence means have — using the previous fact

- hence means have using the previous fact
- thus means show using the previous fact

- hence means have using the previous fact
- thus means show using the previous fact
- There are numerous other tricks of this sort!

```
000
                                     Struct.thy
                                                                                \bigcirc
00 00 I 🔺 🕨 Y 🛏 🖀 🔎 🕦 🐷 🤤 🤣 🚏
lemma abs_m_1:
fixes m :: int
assumes mn: "abs (m * n) = 1"
  shows "abs m = 1"
proof -
 have 0: "m \neq 0" using mn
    by auto
  have "~ (2 \le abs m)"
    sorry
thus "abs m = 1" using 0
    by auto
qed
-u-:--- Struct.thy 35% L116 (Isar Utoks Abbrev; Scripting )------
Successful attempt to solve goal by exported rule:
 |\mathbf{m}| = 1
lemma abs m 1:
?m * ?n! = 1 \implies ?m! = 1
-u-:%%- *response*
                      All L5
                                 (Isar Messages Utoks Abbrev;)------
tool-bar goto
```

000 Struct.thy \square 00 00 I 🔺 🕨 I 🖂 着 🔎 🐧 specify m's type lemma abs_m_1: fixes m :: int assumes mn: "abs (m * n) = 1" shows "abs m = 1" proof have 0: "m \neq 0" using mn by auto have "~ $(2 \le abs m)$ " sorry thus "abs m = 1" using 0 by auto qed -u-:--- Struct.thy 35% L116 (Isar Utoks Abbrev; Scripting)------Successful attempt to solve goal by exported rule: $|\mathbf{m}| = 1$ lemma abs_m_1: $|?m * ?n| = 1 \implies |?m| = 1$ -u-:%%- *response* All L5 (Isar Messages Utoks Abbrev;)----tool-bar goto

000 Struct.thy 00 00 👗 🕨 🗴 🛏 🕌 specify m's type lemma abs_m_1: fixes m :: int declare a premise separately assumes mn: "abs (m * n) = 1" "abs m = 1" shows proof have 0: "m \neq 0" using mn by auto have "~ $(2 \le abs m)$ " sorry thus "abs m = 1" using 0 by auto qed -u-:--- Struct.thy 35% L116 (Isar Utoks Abbrev; Scripting)------Successful attempt to solve goal by exported rule: $|\mathbf{m}| = 1$ lemma abs m 1: $?m * ?n! = 1 \implies ?m! = 1$ -u-:%%- *response* All L5 (Isar Messages Utoks Abbrev;)---tool-bar goto

Starting a Nested Proof

```
\odot \bigcirc \bigcirc
                                      Struct.thy
                                                                                   \bigcirc
00 00 I 🔺 🕨 Y 🛏 🖀 🔎 🕦 🐷 🤤 🤣 🚏
lemma abs_m_1:
 fixes m :: int
 assumes mn: "abs (m * n) = 1"
  shows "abs m = 1"
proof -
 have 0: "m \neq 0" using mn
    by auto
 have "~ (2 \le abs m)"
    proof
thus "abs m = 1" using 0
    by auto
aed
-u-:**- Struct.thy
                       38% L129 (Isar Utoks Abbrev; Scripting)------
proof (state): step 6
goal (1 subgoal):
 1. 2 \leq |m| \implies False
-u-:%%- *goals*
                       Top L1
                                  (Isar Proofstate Utoks Abbrev;)------
Auto-saving...done
```

Starting a Nested Proof

A Nested Proof Skeleton

```
\odot \bigcirc \bigcirc
                                      Struct.thy
                                                                                   \bigcirc
00 00 I 🔺 🕨 Y 🛏 🖀 🔎 🕦 🐷 🤤 🤣 🚏
lemma abs_m_1:
fixes m :: int
  assumes mn: "abs (m * n) = 1"
  shows "abs m = 1"
proof -
  have 0: "m \neq 0" using mn
    by auto
  have "~ (2 \le abs m)"
    proof
    assume "2 ≤ abs m"
    thus "False"
       sorry
    ged
  thus "abs m = 1" using 0
    by auto
aed
-u-:**- Struct.thy 37% L133 (Isar Utoks Abbrev; Scripting )------
Successful attempt to solve goal by exported rule:
(2 \leq ini) \implies False
have \neg 2 \leq m
-u-:%%- *response*
                       All L4
                                  (Isar Messages Utoks Abbrev;)------
Auto-saving...done
```

A Nested Proof Skeleton

```
\odot \bigcirc \bigcirc
                                      Struct.thy
                                                                                   \bigcirc
🚥 😳 🛣 🔺 🕨 🗶 🛏 🖀 🔎 🗊 🐷 🤤 🤣 🚏
lemma abs_m_1:
fixes m :: int
  assumes mn: "abs (m * n) = 1"
  shows "abs m = 1"
proof -
  have 0: "m \neq 0" using mn
    by auto
  have "~ (2 \le abs m)"
                                assumption
    proof
    assume "2 ≤ abs m
     thus "False"
       sorry
    aed
  thus "abs m = 1" using 0
    by auto
aed
                     37% L133 (Isar Utoks Abbrev; Scripting )------
-u-:**- Struct.thy
Successful attempt to solve goal by exported rule:
(2 \leq ini) \implies False
have \neg 2 \leq m
-u-:%%- *response*
                       All L4
                                  (Isar Messages Utoks Abbrev;)------
Auto-saving...done
```

A Nested Proof Skeleton

```
\odot \bigcirc \bigcirc
                                       Struct.thy
                                                                                    \bigcirc
00 00 I 🔺 🕨 Y 🛏 🖀 🔎 🕦 🐷 🤤 🤣 🚏
lemma abs_m_1:
  fixes m :: int
  assumes mn: "abs (m * n) = 1"
  shows "abs m = 1"
proof -
  have 0: "m \neq 0" using mn
    by auto
  have "~ (2 \le abs m)"
                                 assumption
    proof
      assume "2 \le abs m
     thus "False" ≼
                                 conclusion
        sorry
    ged
  thus "abs m = 1" using 0
    by auto
aed
                     37% L133 (Isar Utoks Abbrev; Scripting )------
-u-:**- Struct.thy
Successful attempt to solve goal by exported rule:
(2 \leq ini) \implies False
have \neg 2 \leq m
-u-:%%- *response*
                       All L4
                                   (Isar Messages Utoks Abbrev;)------
Auto-saving...done
```

A Complete Proof

```
000
                                      Struct.thy
                                                                                   \bigcirc
😳 😳 🛣 🔺 🕨 🗶 🛏 🖀 🔎 🕦 🐷 🤤 🤣 🚏
lemma abs_m_1:
  fixes m :: int
  assumes mn: "abs (m * n) = 1"
        "abs m = 1"
  shows
proof -
  have 0: "m \neq 0" "n \neq 0" using mn
    by auto
  have "~ (2 \le abs m)"
  proof
    assume "2 \le abs m"
    hence "2 * abs n \le abs m * abs n"
      by (simp add: mult_mono 0)
    hence "2 * abs n \leq abs (m*n)"
      by (simp add: abs_mult)
    hence "2 * abs n \leq 1"
      by (auto simp add: mn)
    thus "False" using 0
      by auto
  ged
  thus "abs m = 1" using 0
    by auto
aed
-u-:--- Struct.thy 43% L141 (Isar Utoks Abbrev; Scripting )-------
```

A Complete Proof

```
000
                                     Struct.thy
😳 😳 🛣 🔺 🕨 🗶 🛏 🖀 🔎 🗊 🐷 🤤 😏 🚏
lemma abs_m_1:
  fixes m :: int
  assumes mn: "abs (m * n) = 1"
        "abs m = 1"
  shows
proof -
  have 0: "m \neq 0" "n \neq 0" using mn
    by auto
  have "~ (2 \le abs m)"
  proof
    assume "2 \le abs m"
    hence "2 * abs n \le abs m * abs n"
      by (simp add: mult_mono 0)
    hence "2 * abs n \leq abs (m*n)"
                                           a chain of steps leads
      by (simp add: abs_mult)
    hence "2 * abs n \leq 1"
                                              to contradiction
      by (auto simp add: mn)
    thus "False" using 0
      by auto
  aed
  thus "abs m = 1" using 0
    by auto
aed
-u-:--- Struct.thy
                    43% L141
                                 (Isar Utoks Abbrev; Scripting )------
```

Calculational Proofs

Calculational Proofs

The Next Step

The Next Step

The Internal Calculation

000	Struct.thy	\bigcirc
00 00 I 🔺 🕨 I 🕨	H 🖀 🔎 🚯 🐖 😄 🤣 🚏	
<pre>have "~ (2 ≤ abs m)" proof assume "2 ≤ abs m" hence "2 * abs n ≤ by (simp add: mul also have " = at by (simp add: abs also have " = 1' by (simp add: mn)</pre>	abs m * abs n" lt_mono 0) bs (m*n)" s_mult)	0
<pre>finally have "2 * a thus "False" using -u-: Struct.thy</pre>	abs n ≤ 1" . 0 60% L185 (Tsar Utoks Abbrev: Scripting)	4 1
calculation: 2 * in¦ ≤ 1		
-u-:%%- *response* tool-bar next	All L1 (Isar Messages Utoks Abbrev;)	

The Internal Calculation

The Internal Calculation

Ending the Calculation

000			Struct.thy	
00 00	⊼ ∢ ► ⊻ →	4 🖀 🔎 🐧) 🕼 🗢 🥵	
have proof assi hen	"~ (2 ≤ abs m)" ume "2 ≤ abs m" ce "2 * abs n ≤ v (simp add: mu	abs m * abs	s n"	
also by also by	o have " = al y (simp add: ab o have " = 1 y (simp add: mn)	bs (m*n)" s_mult))		0
fin	ally have "2 * a	abs $n \leq 1"$.		
• thu:	s "False" using Struct.thv	0 60% L186	(Isar Utoks Abbrev: Scripting)	
have 2	* ini ≤ 1			
-u-:%%-	*response*	All L1	(Isar Messages Utoks Abbrev;)	-
tool-ba	r next			1.

Ending the Calculation

Ending the Calculation

• The first line is have/hence

- The first line is have/hence
- Subsequent lines begin, also have "... = "

- The first line is have/hence
- Subsequent lines begin, also have "... = "
- Any transitive relation may be used. New ones may be declared.

- The first line is have/hence
- Subsequent lines begin, also have "... = "
- Any transitive relation may be used. New ones may be declared.
- The concluding line begins, finally have/ show, repeats the calculation and terminates with
 (.)